Prinsipnyaadalah batasan-batasan pada fungsi nilai mutlaknya. Perhatikan pada 3x + 1 dan 2x + 4. Dari batasan batasan itu maka dapat diperoleh batasan-batasan nilai penyelesaian seperti pada garis bilangan di bawah ini. Dengan garis bilangan tersebut maka pengerjaanya dibagi menjadi 3 bagian daerah penyelesaian. 1. TopikProgram Linier Subtopik Pertidaksamaan Linear Dua Variabel Level Kognitif from MATH 12344 at San Francisco State University Padagaris bilangan, posisi pecahan 1? di sebelah kanan 5?. Pertidaksamaan dengan daerah yang diarsir sebagai representasi himpunan penyelesaiannya adalah Perhatikan gambar berikut! Jika diketahui?? = 7, segitiga??? siku-siku di?, dan?? merupakan garis tinggi. Berapakah Panjang??? PengembanganModul Realistic Mathematics Education Dengan Konteks Kemaritiman Yang Valid Pada Materi Program Linear Kelas XI. by Zulfa Dianti. Download Free PDF Download PDF Download Free PDF View PDF. penembangan multimedia interaktif menggunajkan powerpoint. by al husaini. Gambarlahdaerah himpunan penyelesaian pertidaksamaan 6x Perhatikan gambar berikut. y 2y+5x=10 5 4 3 2 1 x -5 -4 - Grafik dari {x 1 P0wJl0. Hai Quipperian, apakah kamu masih ingat konsep pertidaksamaan kuadrat? Di artikel sebelumnya, Quipper Blog pernah membahas tentang pertidaksamaan kuadrat lengkap dengan penjabaran garis bilangannya. Nah, pada artikel ini kamu akan diajak untuk menyimak contoh soal tentang pertidaksamaan kuadrat, lho. Daripada penasaran, yuk cekidot! Contoh Soal 1 Suatu pertidaksamaan kuadrat menghasilkan garis bilangan seperti berikut. Solusi yang tepat untuk pertidaksamaan kuadrat tersebut adalah {x-2 3} {xx ≀ -2 atau x 4} {x -3 0 adalah {x x 3/2} {x -1 3/2} {x x > -1 atau x 0 ⇔ 2x – 3 x + 1 > 0 Selanjutnya, tentukan titik pembuat nolnya. Substitusikan nilai x pembuat nolnya pada garis bilangan. Jadi, himpunan penyelesaian pertidaksamaan tersebut adalah {x x 3/2} Jawaban C Contoh Soal 4 Nilai x yang memenuhi pertidaksamaan x2 – 2x β‰₯ 24 adalah x -4 atau x 7} {x-7 {x2 {x-2≀x≀7} {x-1 Pembahasan Pertama, kamu harus memfaktorkan bentuk kuadrat pada soal. x2 – 5x – 14 ≀ 0 x – 7x – 2 ≀ 0 Selanjutnya, tentukan titik pembuat nolnya. x – 7x – 2 ≀ 0 ⇔ x = 7 atau x = -2 Substitusikan nilai x pembuat nol pada garis bilangan. Ingat, tanda pertidaksamaannya adalah lebih besar sama dengan. Artinya, titik bulatannya harus penuh, ya. Jadi, solusi dari pertidaksamaan tersebut adalah {x-2≀x≀7}. Jawaban D Contoh Soal 6 Diketahui pertidaksamaan kuadrat seperti berikut. x2 – x + 2 ≀ – x2 + x + 6 Nilai x yang memenuhi sistem pertidaksamaan tersebut adalah {-1, 0, 1, 2} {0, 1} {-2, -1, 0, 1} {1, 2, 3, 4} {2, 3} Pembahasan Mula-mula, ubahlah bentuk pertidaksamaan tersebut menjadi bentuk pertidaksamaan kuadrat. Lalu, lakukan pemfaktoran. x2 – x + 2 ≀ – x2 + x + 6 ⇔ x2 – x + 2 + x2 – x – 6 ≀ 0 ⇔ 2x2 – 2x – 4 ≀ 0 ⇔ x2 – x – 2 ≀ 0 ⇔ x – 2x + 1 ≀ 0 Tentukan titik pembuat nolnya. x – 2x + 1 ≀ 0 ⇔ x = 2 atau x = -1 Substitusikan nilai x pembuat nol pada garis bilangan. Jadi, nilai x yang memenuhi adalah {-1, 0, 1, 2}. Jawaban A Contoh Soal 7 Perhatikan pertidaksamaan kuadrat berikut. x2 – 9x + 14 β‰₯ 22 Nilai x yang termasuk solusi dari pertidaksamaan tersebut adalah 10 7 5 6 4 Pembahasan Mula-mula, ubahlah bentuk pertidaksamaan pada soal menjadi pertidaksamaan kuadrat seperti berikut. x2 – 9x + 14 β‰₯ 22 ⇔ x2 – 9x + 8 β‰₯ 0 Lakukan pemfaktoran bentuk pertidaksamaan di atas. x2 – 9x + 8 β‰₯ 0 ⇔ x – 8x – 1 β‰₯ 0 Tentukan titik pembuat nolnya. x – 8x – 1 β‰₯ 0 ⇔ x = 8 atau x = 1 Substitusikan nilai x tersebut ke garis bilangan. Nilai x yang memenuhi adalah x ≀ 1 atau x β‰₯ 8 Jadi, nilai x yang termasuk solusi adalah 10 Jawaban A Contoh Soal 8 Tingkat reproduksi buaya di sebuah pusat penangkaran mengikuti persamaan berikut. dengan t dalam tahun Waktu yang diperlukan untuk menghasilkan paling sedikit 9 buaya adalah Minimal 6 bulan Minimal 2,5 tahun Minimal 1 tahun Minimal 2 tahun Minimal 1,5 tahun Pembahasan Di soal ditanyakan waktu yang dibutuhkan untuk menghasilkan paling sedikit 9 ekor buaya. Secara matematis, bisa dinyatakan sebagai f t β‰₯ 9. Oleh karena terdapat keterangan β€œpaling sedikit”, maka persamaan kuadrat tersebut harus dijadikan pertidaksamaan. f t β‰₯ 9 ⇔ 2t2 + 3t + 4 β‰₯ 9 ⇔ 2t2 + 3t – 5 β‰₯ 0 Lalu, lakukan pemfaktoran untuk mencari titik pembuat nolnya. 2t2 + 3t – 5 β‰₯ 0 ⇔ 2t + 5t – 1 β‰₯ 0 ⇔ 2t + 5t – 1 = 0 ⇔ t = -5/2 = -2,5 atau 1 = 1 Substitusikan nilai t pembuat nol pada garis bilangan. Garis bilangan di atas memuat dua buah solusi, yaitu t ≀ -2,5 atau t β‰₯ 1. Oleh karena waktu tidak ada yang bernilai negatif, maka nilai t yang memenuhi adalah t β‰₯1. Jadi, waktu yang diperlukan untuk menghasilkan paling sedikit 9 ekor buaya adalah minimal 1 tahun. Jawaban C Contoh Soal 9 Bu Rumini memiliki usaha pengolahan sambal kemasan. Hasil produksi sambal Bu Rumini, mengikuti persamaan berikut. px = x2 – 35x + 400 Dengan px merupakan banyaknya hasil produksi sambal botol dan x merupakan massa cabai dalam kg. Jika Bu Rumini ingin memproduksi maksimal 100 botol sambal, cabai yang harus disediakan adalah 10 sampai 15 kg 20 sampai 25 kg 17 sampai 30 kg 15 sampai 20 kg Lebih dari 30 kg Pembahasan Oleh karena besaran yang diminta adalah jumlah produksi maksimal 100 botol, maka persamaan produksi sambal Bu Rumini harus kamu jadikan pertidaksamaan seperti berikut. px ≀ 100 ⇔ x2 – 35x + 400 ≀ 100 ⇔ x2 – 35x + 300 ≀ 0 Lakukan pemfaktoran untuk mencari titik pembuat nolnya. x2 – 35x + 300 ≀ 0 ⇔ x – 20x – 15 = 0 ⇔ x = 20 atau x = 15 Jadi, cabai yang harus disediakan adalah 15 sampai 20 kg. Jawaban D Contoh Soal 10 Sebuah bangun persegi panjang memiliki panjang x + 5 cm dan lebar x – 1 cm. Jika luas bangun tersebut tidak boleh lebih dari 40 cm2, nilai x yang memenuhi adalah {-9 ≀ x ≀ 5} {x β‰₯ 5} 2, 3, 4, 5 {x ≀ 5} {1, 2, 3} Pembahasan Persegipanjang memiliki panjang x + 5 cm dan lebar x – 1 cm dan luasnya tidak boleh lebih dari 40 cm2. Untuk mencari nilai x, ubahlah keterangan tersebut ke dalam bentuk prtidaksamaan. Himpunan penyelesaiannya {-9, -8, -7, …, 5} Oleh karena panjang dan lebar tidak mungkin negatif, maka nilai x yang memenuhi adalah {2, 3, 4, dan 5}. Jadi, nilai x yang memenuhi adalah {2, 3, 4, 5}. Jawaban C Setelah melihat 10 contoh soal di atas, apakah Quipperian sudah paham bagaimana cara menyelesaikan soal-soal pertidaksamaan kuadrat? BerandaGambarlah pertidaksamaan berikut pada garis bilang...PertanyaanGambarlah pertidaksamaan berikut pada garis bilangan. c. b ≀ 1 , 5Gambarlah pertidaksamaan berikut pada garis bilangan. c. DKMahasiswa/Alumni Universitas Negeri MalangPembahasanGaris bilangan dari pertidaksamaan adalah sebagai berikutGaris bilangan dari pertidaksamaan adalah sebagai berikut Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!109Yuk, beri rating untuk berterima kasih pada penjawab soal!RDRizka Dinitha Mudah dimengertiΒ©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia Sobat Zenius, mungkin elo udah familiar dengan cara penyelesaian pertidaksamaan berikut x – 4 > 2. Berapa, hasilnya? Yup, pasti elo bakal menjawab dengan x > 6. Jawaban elo betul, tapi, kali ini kita akan membahas pertidaksamaan polinomial dan cara kita mencari nilai x akan berbeda. Gimana tuh, cara menyelesaikan pertidaksamaan polinomial? Simak artikel ini sampai akhir, ya! Menentukan Nilai Titik KritisContoh Soal Pertidaksamaan PolinomialPenutup dan Contoh Soal Latihan Menentukan Nilai Titik Kritis Dalam mencari nilai x pada sebuah pertidaksamaan polinomial, elo harus mencari yang namanya nilai titik kritis. Caranya adalah dengan menentukan letak nilai positif dan negatif dalam garis bilangan. Sebagai contoh, gue akan pakai pertidaksamaan yang tadi, x – 4 > 2. Hasilnya tadi kan x > 6 dan masih kita bisa ubah lagi menjadi x – 6 > 0. Kalau elo gambar garis bilangannya, jadinya akan seperti berikut Kenapa gue bisa tandai yang ke kiri negatif dan yang ke kanan positif? Kalau elo coba masukkan nilai x lebih kecil dari 6, elo akan mendapatkan hasil negatif. Tapi, kalau nilai x lebih besar dari 6, hasilnya akan positif. Karena dalam pertidaksamaan, nilai x harus bisa menghasilkan x > 0, maka elo ambil nilai x yang hasilnya positif. Jadi, nilai x yang memenuhi pertidaksamaan x – 6 > 0 adalah x > 6. Gampang, kan? Nah, tapi, bentuk pertidaksamaan polinomial itu ada banyak sekali, dan penyelesaiannya juga beragam. Tapi tenang aja, gue udah siapkan beberapa contoh pertidaksamaan polinomial lengkap dengan penyelesaiannya supaya elo lebih mantap belajarnya. Yuk kita caw! Baca Juga Rumus Persamaan Kuadrat dan Akar-akarnya Contoh Soal Pertidaksamaan Polinomial 1. Untuk pertidaksamaan ini, kita gambar dulu garis-garis bilangannya. Cara mengalikan tanda-tanda pada garis bilangan Arsip Zenius Setelah elo gambar, elo kalikan tanda- tanda positif dan negatif dari kedua garis bilangan di atas. Maka, elo akan mendapatkan garis bilangan seperti gambar berikut ini Hasil mengalikan tanda-tanda pada garis bilangan Arsip Zenius Jadi, nilai x yang memenuhi pertidaksamaan adalah atau 2. Kalikan juga garis bilangannya seperti yang udah gue jelaskan tadi, dan elo akan mendapatkan garis bilangan berikut Jadi, nilai x yang memenuhi pertidaksamaan adalah atau . 3. Supaya hasilnya lebih terjamin benernya, kita rapikan dulu yuk, pertidaksamaannya. Gue mau pindahin x yang ada di biar jadi di depan. Tapi kalau langsung ditukar aja tempatnya, jadinya malah , kan? Biar lebih oke, kita hilangkan dulu tanda negatifnya dengan mengalikan pertidaksamaannya dengan -1 dan menjadi . Kalau sebuah pertidaksamaan dikalikan dengan -1, maka tandanya akan berubah jadi berlawanan arah. Sekarang, kita buat garis bilangannya! Jadi, nilai x yang memenuhi pertidaksamaan adalah atau . Elo bisa nonton video penyelesaian pertidaksamaan polinomial ini lengkap dengan contoh lainnya, lho! Dimana? Tinggal klik aja banner berikut ini! 4. Kali ini, kita punya bentuk kuadrat. Kalau elo hitung-hitung, mau berapapun nilai x nya kalau hasilnya dipangkatkan genap, pasti hasilnya positif, kan? Makanya elo nggak perlu repot-repot mengalikan garis bilangannya. Langsung aja pake yang . Jadi, nilai x yang memenuhi pertidaksamaan di atas adalah . 5. Kalau kita tinggalin aja yang berpangkat genap dan gambar garis bilangannya, maka akan menjadi seperti berikut Maka kita akan dapat nilai . Tapi nih, meskipun yang berpangkat genap tadi kita cuekin karena nggak ada pengaruhnya ke garis bilangan, jangan dibiarkan begitu aja ya, nanti dia nangis. Mereka tetap bisa memenuhi pertidaksamaan dengan menghasilkan 0. So, kita masih punya x = 2 dan x = -1. Jadi, nilai x yang memenuhi pertidaksamaan tadi adalah x = -1 atau ini udah termasuk x=2, yaps! 6. Sementara, kita punya nilai . Coba elo cek lagi yang berpangkat genap. Ternyata, hasilnya 0. Yang diminta adalah nilai x yang memenuhi pertidaksamaan dan menghasilkan < 0. Berarti, x = -2, x = 1, dan x = 2 kita buang aja. Maka, nilai x yang memenuhi pertidaksamaan adalah atau atau atau . 7. Kalau pecahan gimana, dong? Caranya sama aja ya, elo gambar dulu garis bilangannya seperti biasa. Maka elo bakal dapet atau . Tapi, perlu diingat, kalau dalam pecahan, apapun yang dibagi 0 hasilnya akan tidak terhingga. Jadi disini, penyebutnya harus . Jadi, nilai x yang memenuhi pertidaksamaan adalah atau . 8. Kok, nggak ada kurung-kurungnya? Tenang, ini masih kita bisa ubah bentuknya menjadi . Jadi, nilai x yang memenuhi pertidaksamaan adalah atau . Jawaban ini juga bisa elo buktikan dengan menggambar grafiknya, lho! Caranya bisa elo simak di sini. 9. Yang ini juga kita faktorkan dulu, ya. Hasilnya akan menjadi Kalau elo gambar grafik pertidaksamaan tadi, elo akan punya kurva yang terbuka ke atas seperti berikut Grafik pertidaksamaan polinomial Arsip Zenius Maka, nilai x yang memenuhi adalah atau . Baca Juga Konsep, Grafik, & Rumus Fungsi Kuadrat Penutup dan Contoh Soal Latihan Coba kerjakan soal latihannya, yuk! Dok. Pixabay Ada berbagai bentuk dan cara penyelesaian pertidaksamaan polinomial dan elo baru aja mempelajarinya. Di penghujung artikel ini, gue mau kasih elo contoh-contoh soal lagi untuk elo coba kerjain sambil mengasah kemampuan elo. Nilai x berikut ini yang memenuhi pertidaksamaan adalah ….A. 0B. 1C. 2D. 3Penyelesaian dari pertidaksamaan adalah ….A. B. atau C. D. atau Penyelesaian dari pertidaksamaan adalah ….A. atau B. atau C. atau D. atau Pembahasan 1. Jawaban D. Garis bilangan pertidaksamaannya adalah sebagai berikut Maka, atau . Jadi, nilai x yang memenuhi yang ada dalam pilihan jawaban adalah 3. 2. Jawaban D. Garis bilangan pertidaksamaannya adalah sebagai berikut Jadi, penyelesaiannya adalah atau 3. Jawaban B. Garis bilangan pertidaksamaannya adalah sebagai berikut Jadi, penyelesaiannya adalah atau . Oke deh, sekian dulu pembahasan pertidaksamaan polinomial di artikel ini. Jumpa lagi di tulisan gue lainnya, ya! Baca Juga Pengertian dan Penerapan Polinomial Suku Banyak – Materi Matematika Kelas 11

gambar pertidaksamaan berikut pada garis bilangan